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Abstract: Modern conceptions of ratio and proportion are strongly influenced by Euclid's
treatment in Book V of the Elements. Yet, there is a big difference between how we think of
these ideas and how Euclid thought about them. We naturally attach measurements to the
objects we compare, and because we do this we think of ratios as numbers. Euclid, in contrast,
thought of a ratio as a direct comparison between things. For him, a ratio was not a number.

Introduction

The topic of ratio and proportion has been part of school mathematics since modern
schooling began. It includes the advanced arithmetic and rudimentary algebra used
in dealing with quantities x and y that are related by an equation of the form y = k x,
where k is a constant, and it has numerous applications in science and commerce.

Much of what is taught in school comes from two sources. The arithmetical root is
the ancient procedure known as the “Rule of Three”, used for solving problems such
as finding the price of one quantity of some commodity if the price of another
quantity of the same commodity is known. This is the math that Lincoln was
referring to when he wrote, in the brief autobiography that he prepared prior to the
1860 election: “We reached our new home [in Spencer County, Indiana] in my
eighth year... It was a wild region, with many bears and other wild animals, still in
the woods. There I grew up. There were some schools, so called; but no qualification
was ever required of a teacher beyond "readin, writin, and cipherin” to the Rule of
Three.” In the surviving pages of his school notebook, Lincoln wrote out the
solution to the following problem, which comes from Thomas Dilworth’s
Schoolmaster’s Assistant: “If 3 ounces of silver cost 17 shillings what will 48 ounces
cost?”

In this essay, we uncover the geometric roots of proportional reasoning. The
earliest reference is Book V of Euclid’s Elements, where Euclid develops the concepts
of ratio and proportion for (unmeasured) geometric magnitudes. The words “ratio”
and “proportion” are in fact derived from the Latin words that Cicero suggested as
renderings for Euclid’s words logos and analogia. Book V contains 18 definitions
and 25 propositions on the theory of ratio and proportion. Heath, in his
commentary, writes:

The anonymous author of a scholium to Book V, who is perhaps Proclus, tells us
that ‘some say’ this Book, containing the general theory of proportion which is
equally applicable to geometry, arithmetic, music, and all mathematical
science, ‘is the discovery of Eudoxus, the teacher of Plato.’

What is this theory, and how does it relate to the modern conceptual system of ratio



and proportion?

The chief concerns of Euclid’s theory, as we shall see, are very different from those
that arise when dealing with measured quantities. Euclid’s theory, in fact, includes
(implicitly) an analysis of the measurement process itself, and in this it goes far
deeper than anything we find in typical schoolbook expositions of ratio and
proportion. Understanding this could be very useful for teachers who are trying to
help students develop clear ideas that link work with numbers to the things they
measure.

Contrasts between Ancient and Modern Mathematics

The mathematics of ancient Greece differs from modern mathematics. Number
systems were more rudimentary, and numbers and numerical measurements
played a very limited role in Euclidean geometry.

Aristotle, in his work Categories (written about 50 years before Euclid), classified
quantity as “either discrete or continuous.” The primary example of a discrete
quantity was number, and number meant a collection of units. For the Greeks, the
numbers were the positive integers—nothing more. They had no “real number
system” and no “number line”. Among the continuous quantities, on the other hand,
one found the objects of geometry: segments, planar regions, and other things that
Euclid later referred to as “magnitudes”. They were not numbers, and had no
numbers attached. Ratio, as treated in Book V, is a relationship between magnitudes.
As such, it is an abstraction outside the realm of number.

A passage written by Newton in the 1660s shows that by then the European
conception of number had been completely altered, turning the Greek conception on
its head:

By Number we understand, not so much a Multitude of Unities, as the
abstracted Ratio of any Quantity, to another Quantity of the same Kind, which
we take for Unity. And this is threefold; integer, fracted, and surd: An Integer, is
what is measured by Unity; a Fraction, that which a submultiple Part of unity
measures; and a Surd, to which Unity is incommensurable. (Universal
Arithmetic, translated from the Latin by Ralphson, London 1769, page 2.)

The new and broader conception of number predated Newton, of course, but this is
not the place to explore its history. It suffices to note how fundamentally different
the modern conception of number is from the ancient one. For us, the counting
numbers are merely the most rudimentary level of a hierarchy of ever more general
systems, culminating with the real numbers (or beyond). Our richer number system
provides us with the machinery for treating ratio and proportion in a much different
manner from the ancient Greeks.

A second major difference between ancient and modern mathematics concerns the



immediacy of the objects, as we see in the following passage from David Fowler’s
reconstruction of the ancient Greek mathematical mentality:

Greek mathematicians seemed to confront directly the objects with which they
were concerned: their geometry dealt with the features of geometrical thought
experiments in which figures were drawn and manipulated, and their
arithmetike concerned itself ultimately with the evident properties of
numbered collections of objects. Unlike the mathematics of today, there was no
elaborate conceptual machinery, other than natural language, interposed
between the mathematician and his problem. Today we tend to turn our
geometry into arithmetic, and our arithmetic into algebra so that, for example,
while Elements 1.47: “In right-angled triangles the square on the side
subtending the right angle is equal to the squares on the sides containing the
right angle” means literally to Euclid, that the square can be cut in two and
manipulated into other squares. . ., the result is now usually interpreted as:
“pz+q: = r;,” where we now must explain just what the ‘p’s, ‘q’s and r’s are and
how they can be multiplied and added. To us, the literal squares have been
replaced by some abstraction from an arithmetical analogy. (David Fowler.
The Mathematics Of Plato’s Academy: A New Reconstruction. Second Edition.
Oxford: Clarendon Press, 1999, page 20.)

The point that Fowler is making is not about a difference in depth or abstraction, but
rather about how pervasively and automatically we moderns translate geometry
into numerical and algebraic language and deal with geometric facts and ideas in
these terms. We take for granted a much more immediate connection between
numbers and things—a broad range of things—than the ancients ever conceived.
For us, virtually everything has a numerical measure attached: distance, mass, time,
price, academic performance. Universal quantification is a mark of the mentality our
time. (One speculates that our obsession with attaching numbers to objects may be
related to commerce. There are few things that we can obtain in the modern world
that do not have a price attached. When we see something we want, the first thought
we are likely to have is, “How much will it cost?”)

We think of a ratio as a number obtained from other numbers by division. A
proportion, for us, is a statement of equality between two “ratio-numbers”. When
we write a proportion such as a/b=c/d, the letters refer to numbers, the slashes are
operations on numbers and the expressions on either side of the equals sign are
numbers (or at least become numbers when the numerical values of the letters are
fixed).

This was not the thought pattern of the ancient Greeks. When Euclid states that the
ratio of 4 to B is the same as the ratio of C to D, the letters 4, B, C and D do not refer
to numbers at all, but to segments or polygonal regions or some such magnitudes.
The ratio itself, according to Definition V.3, is just “a sort of relation in respect of
size” between magnitudes. Like the definition of “point”, this tells us little; the real
meaning is found in the use of the term. It is in the rules for use that we find the



amazing conceptual depth of the theory.

The definition that determines how ratios are used is V.5. This tells us how to decide
if two ratios are the same. The key idea is as follows. If we wish to compare two
magnitudes, the first thing about them that we observe is their relative size. They
may be the same size, or one may be smaller than the other. If one is smaller, we
acquire more information by finding out how many copies of the smaller we can fit
inside the larger. We can get even more information if we look at various multiples
of the larger, and for each multiple, determine how many copies of the smaller fit
inside. So, a ratio is implicitly a comparison of all the potential multiples of one
magnitude to all the potential multiples of the other. (Two magnitudes are
incommensurable exactly when no multiple of one is ever exactly equal to any
multiple of the other.) To compare two ratios, A:B and C:D, then, we ought to be
prepared to compare the array of all possible (whole-number) multiples of the first
pair with the array of all possible (whole-number) multiples of the second. Suppose
that we find that for each pair of positive integers (m, n), mA exceeds nB exactly
when mC exceeds nD. This, according to Euclid’s definition, is when we say the ratios
are the same.

What properties do Euclidean magnitudes possess?

As we have said, a ratio is a relationship between magnitudes. To understand
Euclid’s theory fully, then, we need to know what magnitudes are. Segments,
polygonal regions in the plane, volumes and angles were clearly included, but
beyond these kinds, we do not know what other things Euclid might have viewed as
magnitudes. Fortunately, it is not hard to infer from Book V the properties that a
class of things must have, and what operations we must be able to perform on them,
in order to be able to apply the theory.

There are clear indications in his writings of the following:

A) Magnitudes are of several different kinds, e.g., segments, polygonal regions,
volumes, angles—possibly weights and durations.

B) Given two magnitudes of the same kind, exactly one of the following is true: i)
they are the same with respect to size (we say “equivalent”), ii) the first exceeds the
second or iii) the second exceeds the first. (We call this the law of trichotomy for
magnitudes.)

C) Magnitudes of the same kind may be added to one another—or a given
magnitude may be added to itself one or more times—to yield a new magnitude of
the same kind that is larger than any summand. No matter how the addition is
performed, the outcome has the same size. Furthermore, given two magnitudes of
the same kind but of different size, a part of the larger equivalent to the smaller may
be removed, and no matter how this removal is done, the remainders are equivalent.



D) The relationships of equivalence and of excess are compatible with addition and
subtraction in the sense that if equivalent magnitudes are added to (or taken from)
each of two others, the resulting magnitudes will be in the same relation as the
originals.

For Euclid, addition or subtraction of magnitudes was a concrete process. In the case
of segments, addition and subtraction are described in Book I, Propositions 2 and 3.
The addition of polygonal regions is treated in Book I beginning in the proof of
Proposition 35: “Parallelograms which are on the same base and in the same
parallels equal one another.” The discussion continues through the proof of the
Pythagorean Theorem. As a matter of fact, Euclid’s proof of the Pythagorean
Theorem is itself an explicit procedure for slicing up two square regions and
rearranging the parts to make a third square region which is their sum.

In general, there may be numerous ways to add two magnitudes. For example, when
two polygonal regions are added, they may be cut into pieces and reassembled in
many different ways. Euclid took for granted that when addition of the same
magnitudes is performed in two different ways, the results will always be
equivalent, even if the relations between the assembled parts in each result are
different.

Some Euclidean magnitudes can be multiplied, in a sense, but multiplication changes
the kind. The product of two segments, for example, is a rectangle. This form of
multiplication plays an important role in Book I, at the heart of the “geometric
algebra” presented in that book. When multiplication of magnitudes is possible,
multiplication of ratios can be defined. A simple form of this idea is the statement
that if A, B and C are segments and AC and BC are the rectangles with bases A and B
and common height C, then (A:B) is the same as (AC:BC).

Conclusions

The most basic objects in Euclid’s theory of ratio and proportion are the so-called
magnitudes. Segments, planar regions, volumes and angles are examples of
magnitudes.

If any two magnitudes of the same kind are compared with respect to size, they will
either be found to be of the same size, or one will be bigger. Magnitudes of the same
kind may also be added to one another—often in numerous different ways. Yet no
matter how magnitudes are added, the size of the result depends only on the sizes of
the ingredients. A smaller magnitude may be removed from a larger one of the same
kind, also with no ambiguity regarding the size of the result. Adding or subtracting
the same magnitude to or from two others preserve the size relation; of the two that
are increased or diminished by the same magnitude, the larger remains larger.

In speaking of the size of a magnitude, Euclid is not referring to a numerical
measurement, but only to the ordering of the magnitudes of a given kind by size.



Today, we measure objects to find a number that indicates size with respect to a
standard, but no such measurement is presupposed by Euclid’s theory.

Given two magnitudes of the same kind, the ratio between them is a more precise
indicator of relative size than the mere order (bigger/smaller). We may think of the
ratio as the array of all comparisons of all possible multiples of the first magnitude
with all possible multiples of the second. Thus, the ratio of A to B is characterized by
the set of all pairs (m, n) such that mB is less than nA in size.

In forming a ratio, the terms must be like magnitudes because direct comparisons of
magnitude to magnitude are necessary. But once a ratio between objects of one kind
is made, it may be compared to a ratio between objects of another kind. The ability
to compare ratios of one kind of magnitude with ratios of another kind is one of the
most powerful and important aspects of Euclid’s theory.

All the propositions that Euclid proved about ratios have analogues in the arithmetic
of real numbers. We make the translation by selecting a standard unit magnitude U
in each kind of magnitudes. In place of “the ratio of A to B”, we think of “the number
a/b”, where a is the measure of A with respect to U and b is measure of B with
respect to U.

Suggestions

Modern treatments of ratio and proportion are arithmetic/algebraic in form. The
student works with equations and numbers. The numbers have a link to things. But
this link is not “in the arithmetic”, and often not on paper during the work.

Experience suggests that it is often not in mind, either. Consider, for example, the
following problem: “If 48 ounces of orange juice costs $3.45, what should a quart
(32 ounces) cost?” The arithmetic that gives the answer might start with the
equation:

32/48 = x/3.45.

The equation is significant because the 48 is a number of ounces of orange juice with
known value and the 32 is also a number of ounces of the same thing, but of
unknown value. And the ratio of 32 ounces of orange juice to 48 ounces of orange
juice is the same as the ratio of the unknown cost to the known cost of $3.45. But the
equation does not say this. [t contains no hint of the origin of the numbers or their
relationships to things. The equation, by itself, is just a statement about x.

The mathematics of Euclid is not a mathematics of numbers, but a mathematics of
things. The symbols, relationships and manipulations have physical or geometric
objects as their referents. You cannot work on this mathematics without knowing
the objects that you are working with. A challenge for educators is to find a way of
bringing this level of awareness of meaning into the modern, arithmetic/algebraic



treatment in an appropriate way.
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